miércoles, 7 de julio de 2010

Integrantes del equipo

Armenta Gòmez Melisa Yetlanezi

Garcìa Reyna Abigail

Hernàndez Garduño Yendy

Màrquez Pèrez Jaqueline

Perez Yumara

Perez Tavera Erick

Yàñez Hernàndez Julio Cèsar

viernes, 2 de julio de 2010

SAPONIFICACION





INTRODUCCIÓN:
El Jabón es un agente limpiador o detergente que se fabrica utilizando grasas vegetales y animales y aceites. Químicamente, es la sal de sodio o potasio de un ácido graso que se forma por la reacción de grasas y aceites con álcali.
Las grasas y aceites utilizados son compuestos de glicerina y un ácido graso, como el ácido palmítico o el esteárico. Cuando estos compuestos se tratan con una solución acuosa de un álcali, como el hidróxido de sodio, en un proceso denominado saponificación, se descomponen formando la glicerina y la sal de sodio de los ácidos grasos. La palmitina, por ejemplo, que es el éster de la glicerina y el ácido palmítico, produce tras la saponificación palmitato de sodio (jabón) y glicerina. Los ácidos grasos que se requieren para la fabricación del jabón se obtienen de los aceites de sebo, grasa y pescado, mientras que los aceites vegetales se obtienen, por ejemplo, del aceite de coco, de oliva, de palma, de soja (soya) o de maíz. Los jabones duros se fabrican con aceites y grasas que contienen un elevado porcentaje de ácidos saturados, que se saponifican con el hidróxido de sodio. Los jabones blandos son jabones semifluidos que se producen con aceite de lino, aceite de semilla de algodón y aceite de pescado, los cuales se saponifican con hidróxido de potasio. El sebo que se emplea en la fabricación del jabón es de calidades distintas, desde la más baja del sebo obtenido de los desperdicios (utilizada en jabones baratos) hasta sebos comestibles que se usan para jabones finos de tocador. Si se utiliza sólo sebo, se consigue un jabón que es demasiado duro y demasiado insoluble como para proporcionar la espuma suficiente, y es necesario, por tanto, mezclarlo con aceite de coco. Si se emplea únicamente aceite de coco, se obtiene un jabón demasiado insoluble para usarlo con agua fresca; sin embargo, hace espuma con el agua salada, por lo que se usa como jabón marino. Los jabones transparentes contienen normalmente aceite de ricino, aceite de coco de alto grado y sebo. El jabón fino de tocador que se fabrica con aceite de oliva de alto grado de acidez se conoce como jabón de Castilla. El jabón para afeitar o rasurar es un jabón ligero de potasio y sodio, que contiene ácido esteárico y proporciona una espuma duradera. La crema de afeitar es una pasta que se produce mediante la combinación de jabón de afeitar y aceite de coco.


La mayoría de los jabones eliminan la grasa y otras suciedades debido a que algunos de sus componentes son agentes activos en superficie o agentes tensoactivos. Estos agentes tienen una estructura molecular que actúa como un enlace entre el agua y las partículas de suciedad, soltando las partículas de las fibras subyacentes o de cualquier otra superficie que se limpie. La molécula produce este efecto porque uno de sus extremos es hidrófilo (atrae el agua) y el otro es hidrófugo (atraído por las sustancias no solubles en agua). El extremo hidrófilo es similar en su estructura a las sales solubles en agua. La parte hidrófuga de la molécula está formada por lo general por una cadena de hidrocarburos, que es similar en su estructura al aceite y a muchas grasas. El resultado global de esta peculiar estructura permite al jabón reducir la tensión superficial del agua (incrementando la humectación) y adherir y hacer solubles en agua sustancias que normalmente no lo son. El jabón en polvo es una mezcla hidratada de jabón y carbonato de sodio. El jabón líquido es una solución de jabón blando de potasio disuelto en agua.
A finales de la década de 1960, debido al aumento de la preocupación por la contaminación del agua, se puso en entredicho la inclusión de compuestos químicos dañinos, como los fosfatos, en los detergentes. En su lugar se usan mayoritariamente agentes biodegradables, que se eliminan con facilidad y pueden ser asimilados por algunas bacterias.
En general un jabón es una sal sódica o potásica de ácidos grasos. Se obtiene por hidrólisis alcalina de ceras, grasas, cebos y aceites, una cera es un éster natural de peso molecular alto formado por alcoholes monohidroxilados de cadena lineal larga y ácidos grasos superiores de cadena recta.


La saponificación consiste en la hidrólisis alcalina de un éster.
La saponificación es la reacción entre un éster y una base o alcali (hidróxido de sodio o potasio) obteniendo la sal alcalina y a partir de ésta el ácido palmítico.
El alcohol monohidroxilado produce en la saponificación de la cera, y el glicerol en el caso de una grasa, se recuperan de las aguas madres por destilación en vacío.
En la preparación de jabones solubles si se utiliza KOH se obtienen los llamados ¨jabones blandos¨, y con NAOH ¨jabones duros¨. Algunas veces emplean hidróxido de amonio.
Cuando se saponifica con hidróxidos de hierro, calcio, magnesio, plomo, cobre y otros metales, se obtienen jabones insolubles que no tienen acción detergente.


La goma sintética: se fabrica a partir del isopreno. Se clasifica como un elastómero, y tiene la propiedad de la elasticidad y flexibilidad. Se produce por polimerización (reacción en la que se forman cadenas muy largas llamadas polímeros. La polimerización puede ser por adición o por condensación.


Por Adición:
Adición de moléculas pequeñas de un mismo tipo unas a otras por apertura del doble enlace sin eliminación de ninguna parte de la molécula (polimerización de tipo vinilo.).
Adición de pequeñas moléculas de un mismo tipo unas a otras por apertura de un anillo sin eliminación de ninguna parte de la molécula (polimerización tipo epóxido.).
Adición de pequeñas moléculas de un mismo tipo unas a otras por apertura de un doble enlace con eliminación de una parte de la molécula (polimerización alifática del tipo diazo.).
Adición de pequeñas moléculas unas a otras por ruptura del anillo con eliminación de una parte de la molécula (polimerización del tipo a-aminocarboxianhidro.).
Adición de birradicales formados por deshidrogenación (polimerización tipo p-xileno.).




Por Condensación:
Formación de poliésteres, poliamidas, poliéteres, polianhidros, etc., por eliminación de agua o alcoholes, con moléculas bifuncionales, como ácidos o glicoles, diaminas, diésteres entre otros (polimerización del tipo poliésteres y poliamidas.).
Formación de polihidrocarburos, por eliminación de halógenos o haluros de hidrógeno, con ayuda de catalizadores metálicos o de haluros metálicos (policondensación del tipo de Friedel-Craffts y Ullmann.).
Formación de polisulfuros o poli-polisulfuros, por eliminación de cloruro de sodio, con haluros bifuncionales de alquilo o arilo y sulfuros alcalinos o polisulfuros alcalinos o por oxidación de dimercaptanos (policondensación del tipo Thiokol.).

ESTERIFICACION

La esterificacion es la reacción por la cual se forma el ester. La formación del ester ocurre por condensación de un acido y un alcohol y se lo llama como sales del acido del cual proviene.(Al nombre del acido, cuya terminación es -ico, lo sustituye por -oato para designar al ester que formara)Por Ej. El ester metanoato de metillo se formo a partir del ácido metanico y el alcohol metilico.Acido metanico + alcohol metilico---- ----metanoato de metilo.H- C= O- OH + HO- CH3 ---------- H- C= O- OCH3 + H2 O

Comúnmente cuando se habla de ésteres se hace alusión a los ésteres de ácidos carboxílicos, substancias cuya estructura es R-COOR', donde R y R' son grupos alquilo. Sin embargo, se pueden formar en principio ésteres de prácticamente todos los oxácidos inorgánicos. Por ejemplo los ésteres carbónicos derivan del ácido carbónico y los ésteres fosfóricos, de gran importancia en Bioquímica, derivan del ácido fosfórico.

Éster
(éster de ácido carboxílico)
Éster carbónico
(éster de ácido carbónico)
Éster fosfórico
(triéster de ácido fosfórico)




Dada la importancia de los ésteres se han desarrollado muchos procesos para obtener ésteres. El más común es el calentamiento de una mezcla del alcohol y del ácido correspondiente en presencia de cantidades catalíticas de ácido sulfúrico, utilizando el reactivo más económico en exceso para aumentar el rendimiento de la reacción (esterificacion de Fischer-Speier). El ácido sulfúrico sirve en este caso tanto de catalizador como de sustancia higroscópica que absorbe el agua formada en la reacción (a veces es sustituido por ácido fosfórico concentrado). En general, este procedimiento requiere de temperaturas elevadas y de tiempos de reacción largos presentando por tanto inconvenientes; El alcohol puede sufrir reacciones de eliminación formando olefinas, esterificacion con el propio ácido sulfúrico o la formación del correspondiente éter simétrico. De igual modo el ácido orgánico que se pretende eterificar puede sufrir descarboxilación.Por esto a menudo se utilizan derivados del ácido más activos.

En la síntesis del ácido acetilsalicílico por ejemplo (el éster entre el grupo hidroxilo del ácido salicílico y del ácido acético) se parte del anhidruro del ácido acético y del ácido salicílico que actúa como alcohol. En vez de agua se libera una molécula de ácido acético que puede ser separada fácilmente del producto:
O(OCCH3)2 + HO(C6H4)COOH -> HOOCCH3) + H3CCOO(C6H4)COOH



También se utilizan procesos de transesterificación donde se hace reaccionar un éster con un alcohol en presencia de un catalizador como el tetracloruro de germanio, otro ácido de Lewis o trazas de base. Se libera el alcohol previamente unido en forma del éster. Este proceso se emplea industrialmente sobre todo en la obtención del PET (polietilentereftalato), un plástico transparente que se emplea por ejemplo para fabricar botellas de bebida.


Propiedades químicas de los esteres

Los ésteres son el producto de la deshidratación entre una molécula de ácido y una de alcohol. Para nombrarlos se cambia la terminación ico del nombre del ácido por el sufijo ato y el nombre del radical derivado del alcohol, o bien el nombre del metal en el caso de las sales orgánicas.


Al reaccionar un ácido inorgánico u orgánico con un alcohol, se elimina el agua y se forma un éster, en el que el hidrógeno ácido ha sido reemplazado por un radical alquilo. Los ésteres, aunque de constitución análoga a las sales, se diferencian de éstas en que no se ionizan. Son también insolubles en agua y muy abundantes en la naturaleza, determinando el olor de las frutas y las flores. Se designan cambiando la terminación oico del ácido por la de ato (nitrato de etilo, etanoato de metilo).Obtención.- los ésteres se preparan por reacción de los yoduros de alquilo con sales de plata:CH3-COOAg+ICH3à CH3-COOCH3+IagPor la acción de un cloruro de ácido sobre un alcohol.CH3_COCL+NaOC2H5 à CH3-COOC2H5+CLNa

Propiedades químicas

En las reacciones de los ésteres, la cadena se rompe siempre en un enlace sencillo, ya sea entre el oxígeno y el alcohílo R, ya sea entre el oxígeno y el grupo R-CO-, eliminando así el alcohol o uno de sus derivados (R´I, R´-O-Mg-X, por ejemplo). La saponificación d los ésteres, llamada así por su analogía con la formación de jabones a partir de las grasas, es la reacción inversa a la esterificacion:R-CO-O-R´+HO-Hà R-CO-OH+R´-O-HLos ésteres se hidrogenan más fácilmente que lo ácidos, empleándose generalmente el éster etílico tratado con una mezcla de sodio y alcohol, y se condensan entre sí en presencia de sodio y con las cetonas.


Muchos ésteres tienen un aroma característico, lo que hace que se utilicen ampliamente como sabores y fragancias artificiales. Por ejemplo:
Metil butanoato: olor a piña metil salicilato (aceite de siempreverde): olor de las pomadas Germolene™ y Ralgex™ (Reino Unido) octanoato de heptilo: olor a frambuesa pentil etanoato: olor a plátano pentil pentanoato: olor a manzana pentil butanoato: olor a pera o a albaricoque octil etanoato: olor a naranja. Los ésteres también participan en la hidrólisis esterárica: la ruptura de un éster por agua. Los ésteres también pueden ser descompuestos por ácidos o bases fuertes. Como resultado, se descomponen en un alcohol y un ácido carboxílico, o una sal de un ácido carboxílico.

CRISTALIZACION


La cristalización es el proceso por el cual se forma un sólido cristalino, ya sea a partir de un gas, un líquido o una disolución. La cristalización es un proceso en donde los iones, átomos o moléculas que constituyen la red cristalina forman enlaces hasta formar cristales, que se emplea en química con bastante frecuencia para purificar una sustancia sólida. La operación de cristalización es aquella por medio de la cual se separa un componente de una solución liquida transfiriéndolo a la fase sólida en forma de cristales que precipitan. Es una operación necesaria para todo producto químico que se presenta comercialmente en forma de polvos o cristales, ya sea el azúcar o sacarosa, la sal común o cloruro de sodio. En la cadena de operaciones unitarias de los procesos de fabricación se ubica después de la evaporación y antes de la operación de secado de los cristales y envasado.
Toda sal o compuesto químico disuelto en algún solvente en fase liquida puede ser precipitada por cristalización bajo ciertas condiciones de concentración y temperatura que el ingeniero químico debe establecer dependiendo de las características y propiedades de la solución, principalmente la solubilidad o concentración de saturación, la viscosidad de la solución, etc.
Para poder ser transferido a la fase sólida, es decir, cristalizar, un soluto cualquiera debe eliminar su calor latente o entalpía de fusión, por lo que el estado cristalino además de ser el mas puro, es el de menor nivel energético de los tres estados físicos de la materia, en el que las moléculas permanecen inmóviles unas respecto a otras, formando estructuras en el espacio, con la misma geometría, sin importar la dimensión del cristal.

Tipo de cristales
Un cristal puede ser definido como un sólido compuesto de átomos arreglados en orden, en un modelo de tipo repetitivo. La distancia interatómica en un cristal de cualquier material definido es constante y es una característica del material. Debido a que el patrón o arreglo de los átomos es repetido en todas direcciones, existen restricciones definidas en el tipo de simetría que el cristal posee.
La forma geométrica de los cristales es una de las características de cada sal pura o compuesto químico, por lo que la ciencia que estudia los cristales en general, la cristalografía, los ha clasificado en siete sistemas universales de cristalización:

Sistema Cúbico
Las sustancias que cristalizan bajo este sistema forman cristales de forma cúbica, los cuales se pueden definir como cuerpos en el espacio que manifiestan tres ejes en ángulo recto, con “segmentos”, “matices”, ó aristas” de igual magnitud, que forman seis caras o lados del cubo. A esta familia pertenecen los cristales de oro, plata, diamante, cloruro de sodio, etc.

Sistema Tetragonal
Estos cristales forman cuerpos con tres ejes en el espacio en ángulo recto, con dos de sus segmentos de igual magnitud, hexaedros con cuatro caras iguales, representados por los cristales de oxido de estaño.

Sistema Ortorrómbico
Presentan tres ejes en ángulo recto pero ninguno de sus lados o segmentos son iguales, formando hexaedros con tres pares de caras iguales pero diferentes entre par y par, representados por los cristales de azufre, nitrato de potasio, sulfato de bario, etc.

Sistema Monoclínico
Presentan tres ejes en el espacio, pero sólo dos en ángulo recto, con ningún segmento igual, como es el caso del bórax y de la sacarosa.

Sistema Triclínico
Presentan tres ejes en el espacio, ninguno en ángulo recto, con ningún segmento igual, formando cristales ahusados como agujas, como es el caso de la cafeína.

Sistema Hexagonal
Presentan cuatro ejes en el espacio, tres de los cuales son coplanares en ángulo de 60°, formando un hexágono bencénico y el cuarto en ángulo recto, como son los cristales de zinc, cuarzo, magnesio, cadmio, etc.

Sistema Romboédrico
Presentan tres ejes de similar ángulo entre si, pero ninguno es recto, y segmentos iguales, como son los cristales de arsénico, bismuto y carbonato de calcio y mármol.


Importancia de la cristalización en la industria
En muchos casos, el producto que sale para la venta de una planta, tiene que estar bajo la forma de cristales. Los cristales se han producido mediante diversos métodos de cristalización que van desde los más sencillos que consisten en dejar reposar recipientes que se llenan originalmente con soluciones calientes y concentradas, hasta procesos continuos rigurosamente controlados y otros con muchos pasos o etapas diseñados para proporcionar un producto que tenga uniformidad en la forma, tamaño de la partícula, contenido de humedad y pureza. Las demandas cada vez mas crecientes de los clientes hacen que los cristalizadores sencillos por lotes se estén retirando del uso, ya que las especificaciones de los productos son cada vez más rígidas.
La cristalización es importante como proceso industrial por los diferentes materiales que son y pueden ser comercializados en forma de cristales. Su empleo tan difundido se debe probablemente a la gran pureza y la forma atractiva del producto químico sólido, que se puede obtener a partir de soluciones relativamente impuras en un solo paso de procesamiento. En términos de los requerimientos de energía, la cristalización requiere mucho menos para la separación que lo que requiere la destilación y otros métodos de purificación utilizados comúnmente. Además se puede realizar a temperaturas relativamente bajas y a una escala que varía desde unos cuantos gramos hasta miles de toneladas diarias. La cristalización se puede realizar a partir de un vapor, una fusión o una solución. La mayor parte de las aplicaciones industriales de la operación incluyen la cristalización a partir de soluciones. Sin embargo, la solidificación cristalina de los metales es básicamente un proceso de cristalización y se ha desarrollado gran cantidad de teoría en relación con la cristalización de los metales.
La cristalización consiste en la formación de partículas sólidas en el seno de una fase homogénea.
Las partículas se pueden formar en una fase gaseosa como en el caso de la nueve, mediante solidificación a partir de un líquido como en la congelación de agua para formar hielo o en la manufactura de monocristales, o bien por cristalización de soluciones líquidas.
Se puede decir que la cristalización es un arte, dando a entender que la realidad técnica es sobrepasada en ocasiones por todos los factores empíricos que están involucrados en la operación. Estos sistemas geométricos son constantes para los cristales del mismo compuesto químico, independientemente de su tamaño. Los cristales son la forma más pura de la materia, su bien sucede que precipitan simultáneamente cristales de varias sustancias formando soluciones sólidas de varios colores como son los minerales como el mármol veteado, el jade, onix, turquesas, etc., en los cuales cada color es de cristales de una sal diferente. Sin embargo cuando cristaliza solamente un solo compuesto químico, los cristales son 100% puros. Además de su forma geométrica, los cristales son caracterizados

METODO DE CRISTALIZACION

Disolvente
Un disolvente es una sustancia que permite la dispersión de otra en su seno. Es el medio dispersante de la disolución. Normalmente, el disolvente establece el estado físico de la disolución, por lo que se dice que el disolvente es el componente de una disolución que está en el mismo estado físico que la disolución. También es el componente de la mezcla que se encuentra en mayor proporción.
Las moléculas de disolvente ejercen su acción al interaccionar con las de soluto y rodearlas. Se conoce como solvatación. Solutos polares serán disueltos por disolventes polares al establecerse interacciones electrostáticas entre los dipolos. Los solutos apolares disuelven las sustancias apolares por interacciones entre dipolos inducidos.

Solubilidad
La solubilidad es una medida de la capacidad de una determinada sustancia para disolverse en otra. Puede expresarse en moles por litro, en gramos por litro, o en porcentaje de soluto; en algunas condiciones se puede sobrepasarla, denominándose a estas soluciones sobresaturadas. El método preferido para hacer que el soluto se disuelva en esta clase de soluciones es calentar la muestra. La sustancia que se disuelve se denomina soluto y la sustancia donde se disuelve el soluto se llama solvente.

DESTILACIÒN POR ARRASTRE DE VAPOR

Por destilación se entiende aquella operación de separar, mediante vaporización y re condensación, los diferentes componentes líquidos, solido en liquido o gases licuados de una mezcla, aprovechando los diferentes puntos de ebullición (temperaturas de ebullición) de cada una de las sustancias ya que el punto de ebullición es una propiedad intensiva de cada sustancia, es decir, no varia en función de la masa o el volumen, aunque sí en función de la presión .

La destilación por arrastre con vapor es una técnica usada para separar sustancias orgánicas insolubles en agua y ligeramente volátiles, de otras no volátiles que se encuentran en la mezcla, como resinas o sales inorgánicas. Cuando se tienen mezclas de líquidos que no son miscibles entre sí, se tiene un tipo de destilación que sigue la ley de Dalton sobre las presiones parciales. Como resultado de este comportamiento, y cuando uno de los componentes es agua, al trabajar a presión atmosférica, se puede separar un componente de mayor punto de ebullición que el del agua a una temperatura menor a 100º (92º en el D.F.) Debido a lo anterior, con esta técnica se pueden separar sustancias inmiscibles en agua y que se descomponen a su temperatura de ebullición o cerca de ella, por lo que se emplea con frecuencia para separar aceites esenciales naturales que se encuentran en hojas, cáscaras o semillas de algunas plantas (té limón. menta, canela, cáscaras de naranja o limón, anís, pimienta, etc.,) Los aceites esenciales también pueden aislarse de sus fuentes naturales por medio de la extracción con disolventes orgánicos. Dependiendo de la técnica que se utilice para el aislamiento, será la pureza y rendimiento del aceite esencial.






La destilación por arrastre de vapor es un tipo especial de destilación que se basa en el equilibrio de líquidos inmiscibles. Según se ha visto anteriormente, la temperatura de ebullición de una mezcla de dos componentes inmiscibles es inferior a la temperatura de ebullición de cualquiera de ellos por separado.
Supóngase que se desea recuperar un hidrocarburo pesado, C18 H38, que impregna un residuo sólido. Como la volatilidad de este compuesto es muy baja, habrá que elevar mucho su temperatura para alcanzar una velocidad de vaporización y, por tanto, de recuperación apreciable. A veces, por diversas razones, no es deseable alcanzar estas elevadas temperaturas, (descomposición térmica de los productos, cambio en sus propiedades, etc). En estos casos, una solución técnica viable puede ser la destilación por arrastre de vapor. Esta operación se puede llevara a cabo de varias formas:
Modalidad 1: Se inyecta vapor saturado a través del residuo que contiene la sustancia a recuperar, mientras se mantiene una presión de operación de 1 bar. Parte del vapor condensará para calentar y vaporizar el hidrocarburo, formándose dos fases líquidas inmiscibles que alcanzan el equilibrio a una temperatura muy próxima a los: = 0,9993 + 0,0007.
La cantidad de vapor de arrastre necesaria por cada mol de hidrocarburos a recuperar es: mol de vapor/ mol de HC.

El consumo de vapor es, sin embargo, superior, ya que hay que contabilizar el vapor que condensa para calentar y vaporizar el hidrocarburo. Modalidad 2: Supóngase ahora que se inyecta vapor sobrecalentado y que, gracias al aporte de una fuente externa de calor, el vapor no condensa.
En estas condiciones, la relación de equilibrio es:
P = Pagua + PºHC , y la temperatura de operación se puede fijar independientemente para cualquier presión de operación. Asumiendo que ésta es de 1 bar y que la temperatura se fija en 204º C gracias a la fuente externa de calor, la presión parcial de vapor de agua será:
Pagua = 1 - PºHC (204º C) = 1 - 0,0442 = 0,9558.

Las necesidades de vapor serán ahora:
mol de vapor/ mol de HC
Puede observarse cómo al operar a mayor temperatura se reducen las cantidades de vapor de arrastre. En contrapartida, hay que aportar calor mediante una fuente externa que evita la condensación de parte del vapor.
Modalidad 3:
Es posible ahorrar más vapor aún, si se opera a presión reducida. En efecto, si se mantiene como temperatura de operación 204º C, pero la presión de operación se reduce a 0,2721 bar, la presión parcial que debe aportar el vapor de agua es:
El consumo de vapor de arrastre es ahora:
mol de vapor/ mol de HC
En este caso sigue siendo necesario aportar energía mediante una fuente externa para calentar y vaporizar el hidrocarburo y, además, emplear un sistema de vacío, que también consumirá energía.


La destilación por arrastre con vapor es una técnica usada para separar sustancias orgánicas insolubles en agua y ligeramente volátiles, de otras no volátiles que se encuentran en la mezcla, como resinas o sales inorgánicas, u otros compuestos orgánicos no arrastrables.
Ley de Dalton
Los vapores saturados de los líquidos inmiscibles sigue la Ley de Dalton sobre las presiones parciales, que dice que: cuando dos o más gases o vapores, que no reaccionan entre sí, se mezclan a temperatura constante, cada gas ejerce la misma presión que si estuviera solo y la suma de las presiones de cada uno, es igual a la presión total del sistema. Su expresión matemática es la siguiente:


PT = P1 + P2 + --- Pn
Al destilar una mezcla de dos líquidos inmiscibles, su punto de ebullición será la temperatura a la cual la suma de las presiones de vapor es igual a la atmosférica. Esta temperatura será inferior al punto de ebullición del componente más volátil.
Si uno de los líquidos es agua (destilación por arrastre con vapor de agua) y si se trabaja a la presión atmosférica, se podrá separar un componente de mayor punto de ebullición que el agua a una temperatura inferior a 100ºC. Esto es

muy importante cuando el compuesto se descompone a su temperatura de ebullición o cerca de ella.
En general, esta técnica se utiliza cuando los compuestos cumplen con las condiciones de ser volátiles, inmiscibles en agua, tener presión de vapor baja y punto de ebullición alto.

En la destilación por arrastre de vapor de agua se lleva a cabo la vaporización selectiva del componente volátil de una mezcla formada por éste y otros "no volátiles". Lo anterior se logra por medio de la inyección de vapor de agua directamente en el interior de la mezcla, denominándose este "vapor de arrastre", pero en realidad su función no es la de "arrastrar" el componente volátil, sino condensarse en el matraz formando otra fase inmiscible que cederá su calor latente a la mezcla a destilar para lograr su evaporación. En este caso se tendrán la presencia de dos fases insolubles a lo largo de la destilación (orgánica y acuosa), por lo tanto, cada líquido se comportará como si el otro no estuviera presente. Es decir, cada uno de ellos ejercerá su propia presión de vapor y corresponderá a la de un líquido puro a una temperatura de referencia.
La condición más importante para que este tipo de destilación pueda ser aplicado es que tanto el componente volátil como la impureza sean insolubles en agua ya que el producto destilado volátil formará dos capas al condensarse, lo cual permitirá la separación del producto y del agua fácilmente.
Como se mencionó anteriormente, la presión total del sistema será la suma de las presiones de vapor de los componentes de la mezcla orgánica y del agua, sin embargo, si la mezcla a destilar es un hidrocarburo con algún aceite, la presión de vapor del aceite al ser muy pequeña se considera despreciable a efectos del cálculo:

P = Pa° + Pb°
Donde:
P = presión total del sistema
Pa°= presión de vapor del agua
Pb°= presión de vapor del hidrocarburo

DESTILACIÒN SIMPLE


El aparato utilizado para la destilación en el laboratorio es el alambique. Consta de un recipiente donde se almacena la mezcla a la que se le aplica calor, un condensador donde se enfrían los vapores generados, llevándolos de nuevo al estado líquido y un recipiente donde se almacena el líquido concentrado.
En la industria química se utiliza la destilación para la separación de mezclas simples o complejas. Una forma de clasificar la destilación puede ser la de que sea discontinua o continua.
En el esquema de la derecha puede observarse un aparato de destilación simple básico:


1.Mechero, proporciona calor a la mezcla a destilar.
2.Ampolla o matraz de fondo redondo, que deberá contener pequeños trozos de material poroso (cerámica, o material similar) para evitar sobresaltos repentinos por sobrecalentamientos.
3. Cabeza de destilación: No es necesario si la retorta tiene una tubuladura lateral.
4. Termómetro: El bulbo del termómetro siempre se ubica a la misma altura que la salida a la entrada del refrigerador. Para saber si la temperatura es la real, el bulbo deberá tener al menos una gota de líquido. Puede ser necesario un tapón de goma para sostener al termómetro y evitar que se escapen los gases (muy importante cuando se trabaja con líquidos inflamables).
5. Tubo refrigerante. Aparato de vidrio, que se usa para condensar los vapores que se desprenden del balón de destilación, por medio de un líquido refrigerante que circula por éste.
6. Entrada de agua: El líquido siempre debe entrar por la parte inferior, para que el tubo permanezca lleno con agua.
7. Salida de agua: Casi siempre puede conectarse la salida de uno a la entrada de otro, porque no se calienta mucho el líquido.
8. Se recoge en un balón, vaso de precipitados, u otro recipiente.
9. Fuente de vacío: No es necesario para una destilación a presión atmosférica.10.-Adaptador de vacío: No es necesario para una destilación a presión atmosférica

PUNTO DE EBULLICION

El punto de ebullición es la temperatura a la cual un elemento químico pasa del estado líquido al estado gaseoso, o a la inversa.
La temperatura de una sustancia o cuerpo es una medida de la energía cinética de las moléculas. A temperaturas inferiores al punto de ebullición, sólo una pequeña fracción de las moléculas en la superficie tiene energía suficiente para romper la tensión superficial y escapar, al llegar al punto de ebullición la mayoría de las moléculas es capaz de escapar desde todas partes del cuerpo, no solo la superficie. Sin embargo, para la creación de burbujas en todo el volumen del líquido se necesitan imperfecciones o movimiento. Un líquido puede calentarse pasado su punto de ebullición. En ese caso se dice que es un líquido "sobrecalentado". En un líquido súper calentado, una pequeña perturbación provocará una ebullición explosiva del líquido. Esto puede ocurrir al calentar agua en un recipiente liso (por ejemplo Pyrex) en un microondas. Al echar azúcar en esta agua sobrecalentada, el contenido completo puede ebullir en la cara del usuario, causando quemaduras.